< 青智 QINGZHI ▶

8961C2 发电机专用测试仪 使用说明书

(2025年3月第1.3版)

青岛青智仪器有限公司

地址: 青岛市高新区宝源路 780 号联东 U 谷 A-8 号楼东 电话: 0532-81920028(多线) 网址: Http://www.qingzhi.com

更多详细资料,例如通讯协议,上位机软件,请扫描下方二维码至公司网站技术资料中下载

第一章	常 规	1
第二章	功能简介	4
第三章	基本操作	5
第四章	输入连接	7
第五章	稳态测试	
第六章	波形显示	
第七章	谐波显示	
第八章	不平衡度显示	
第九章	整定测试	14
第十章 注	波动测试	
第十一章	章 突加测试	16
第十二章	章 突卸测试	
第十三章	章 录波测试	
第十四章	章 参数设置	
第十五章	章 数据管理	
第十六章	章 日常维护及故障处理	
第十七章	章 技术指标	

第一章常规

简介:

本章主要介绍与8961C2发电机专用测试仪(以下简称为"测试仪")有关的许多常规方面的重要 内容。

包括:

- 注意事项。
- 保证及责任条件。
- 产品合格声明。
- •发货清单:测试仪套件中应包含的物品清单。
- 联系信息。

• 安全须知: 请先阅读!

感谢:欢迎选择青智仪器有限公司的产品,在本产品使用前请详细阅读本手册,以便于正确使用。

请注意以下事项:

1. 本手册的版权归青智仪器有限公司所有。在未经本公司书面许可的情况下,严禁以任何形式复制、传递、 分发和存储本手册的任何内容。

2. 青智仪器有限公司遵循持续发展的策略。因此,青智仪器有限公司保留在不预先通知的情况下,对本手 册中描述的任何产品进行修改和改进的权力。

3. 本手册的内容可能因为修改和改进而产生未经预告的变更。如有不详之处,请参照本手册提供的信息联系。

4. 青智仪器有限公司严格实施 IS09001 质量管理体系。本公司产品虽然在严格的品质管理过程控制下制造、出厂,但如果出现不正常事项或意外之处,请通知本公司代理商、或参照本手册提供的信息联系。

5. 在产品使用过程中出现任何不正常事项或意外之处,请参照本手册提供的信息联系。

6. "青智 QINGZHI"为青岛青智仪器有限公司注册商标。

有限保证及责任限定

1. 青智仪器有限公司保证每一个产品在正常使用和维修期间都没有材料缺陷和制造工艺问题。测试仪的保证期限为 1.5 年;其附件的保证期限为 90 天。保证期从发货之日算起。零件、产品修理和服务的保证期为 90 天。

本保证仅适用于授权零售商的原始买方或最终用户,本保证不适用于保险丝,或者任何被公司确认为由于误用、改造、疏忽、意外、非正常操作和使用所造成的产品损坏。

公司保证软件能够在符合性能指标的条件下正常操作。公司并不保证软件没有错误或不会操作中断。

2. 青智仪器有限公司仅授权零售商为最终客户提供产品的保证。但并未授权他们代表青智仪器有限公司提供更大的或不同的保证。凡是从通过青智仪器有限公司授权的直销商处购买的产品,本公司都可提供保证支持。

3. 青智仪器有限公司的保证责任是有限的。本公司可以选择是否将依购买价退款、免费维修或更换在保证 期内退回到本公司授权服务中心的有缺陷产品。

4. 为了获得保证服务,请联系青智仪器有限公司或授权零售商。

5. 本保证包括买方仅有的全部维修内容,并且己取代以其他方式明示或暗示的所有其他保证内容,包括但 不限于为满足特殊适销性或要求所引起的任何暗示的保证内容。 青智仪器有限公司不对任何特殊的、间接 的、偶然的或后续的损坏或损失及数据丢失承担责任, 无论是否由于违背担保合约或基于合同、民事侵权、 信念或任何其它理由而导致这些损失。

产品合格声明

本声明仅适用于 8961C2 发电机专用测试仪。

测试仪产品由青智仪器有限公司设计、制造、并按照相关国家标准进行检验合格。

测试仪的所有知识产权归青智仪器有限公司所有。

测试仪的检验在施加标准信号的条件下完成。如果使用互感器扩展量程进行测试时,请考虑因为使用 PT (电压互感器)、CT (电流互感器)等而引入的误差。

发货清单

测试仪套件中包括下列物品,请仔细核对,如有不同,请及时联系本公司。

序 号	名 称	数 量	单 位	备注
1	发电机专用测试仪	1	台	
2	仪表用电源线	1	根	
3	仪表用 0.5A 保险丝	2	只	
4	仪表使用说明书	1	份	
5	合格证	1	张	
6	仪表检测报告	1	份	
7	RS485 通讯线	1	根	
8	RS232 通讯线	1	根	公司自制的三芯线
9	RS485/232 转换器	1	只	
10	USB 通讯线	1	根	
11	有耳封口端子弯头6P	1	只	
12				
13				

表 1-1 发货清单

安全须知:请先阅读

1. 只能依照本手册的规定使用测试仪及其附件。否则,测试仪及其附件提供的保护可能会失效。警告一词代表对使用者构成危险的情况或行为。小心一词代表对测试仪可能造成损坏的情况或行为。

2. 警告:

为避免触电或引起火灾:

- 使用测试仪及其附件之前,请先完整阅读用户手册。
- 不要单独工作。
- 切勿在爆炸性的气体或蒸汽附近使用本测试仪。
- 只能使用测试仪所附带或经指示适用于测试仪的绝缘的测试导线。

• 使用前,检查测试仪、测试导线和附件的机体是否有损坏的情况。如有损坏,应立即更换。查看是 否有缺损、裂缝或缺少塑胶件,特别留意连接器附近的绝缘。

- 拆下所有不正在使用的测试导线和附件。
- 不要施加超出测试仪额定值的输入电压、输入电流。
- 不要使用裸露的金属接头或香蕉插头。
- 不要将金属物件插入接头。

• 特别提示: 本测试仪可以测试交流和直流信号,测试信号通过不同的接线端子接入,请使用时特别注意,严禁接入错误的测试信号。

3. 小心:

- 如果安全保护功能失效,使用测试仪可能存在危险。
- 使用前,请先检查测试导线是否有机械损坏并更换损坏的测试导线!
- 请勿使用失效或不能正常工作的测试仪或其附件。应将设备送修。

仪表使用注意事项:

- 1. 仪表使用前,请注意检查所使用的附件是否适宜。
- 2. 仪表应在推荐的工作条件下使用。
- 3. 不要超过仪表的测量极限使用。
- 4. 在接入测试接线时请确保用电安全。

注意

仪表检定时:

- 1. 电压倍率和电流倍率必须均设为1。
- 2. 线制为三相四线, 仪表接线请参照三相四线接线图。

第二章 功能简介

简介

8961C2 发电机专用测试仪是为电机测试所制作的专用仪表。测试仪采用高速、流水线结构的 ARM 内核、运算速度可达 72M 的 32 位处理器,同时配备了速度为 200k 的高速 A/D 进行采样。设计广泛采用了高度集成芯片,使得整个仪表内部结构紧凑、简单。同时提高了整机的高可靠性和准确度。采用 5.6 大屏幕彩色液晶显示(图文显示)。

本测试仪符合以下标准要求,并按照以下要求对发电机进行测试。

- GB/T 2820-1997 往复式内燃机驱动的交流发电机组;
- GB/T 2820-2009 往复式内燃机驱动的交流发电机组;
- GJB 1488-1992 军用内燃机电站通用试验方法;
- GJB 235A-1997 军用交流移动电站通用规范;

测试项目

表 2-1:	测试项目及测试参数
· · · · · · ·	

测试功能	测量参数	耗时	备注
稳态测试	电压 (U:V), 电流 (I:A), 有功功率 (P:W), 功率因数 (PF), 视在功率 (S:VA), 无功功率(Q:Var), 有功电能(Ep:W•h), 无功电能(Eq:Var•h)		1)稳态 测试、
波形	全部波形,电压波形,电流波形,分相波形,波形数据:电压调制率,电压峰值 Upk,电压波峰系数 Ucf,电压畸变率,电流峰值 Ipk,电流波峰系数 Icf。	1秒/次	波形、 谐波、 不平衡 度、录
谐波	电压总谐波(波形畸变率),电流总谐波;谐波棒形图,电压偏离系数, 电压电流分次谐波(工频128次,中频32次);电话谐波因数(工频)。		波可同 时进行
不平衡度	电压不平衡度,三相电压基波数据,零序电压,负序电压,正序电压; 电压角度,电流角度,相角度;相量图。		。 2)整定 测试、
整定测试	电压整定上升范围,相对的电压整定上升范围; 电压整定下降范围,相对的电压整定下降范围; 频率整定上升范围,相对的频率整定上升范围; 频率整定下降范围,相对的频率整定下降范围。	60秒	波动、突突可 加和 可 世
波动测试	波动电压最大值,最小值,稳态电压偏差; 波动频率最大值,最小值,稳态频率带。	60 秒	行。
突加测试 (加 载)	加载时下降的最低瞬时电压,瞬态电压偏差,负载增加后的电压恢复时间;加载时下降的最低瞬时频率,瞬态频率偏差,负载增加后的频率恢复时间。	12 秒	
突卸测试 (减 载)	卸载时上升的最高瞬时电压,瞬态电压偏差,负载减少后的电压恢复时间; 卸载时上升的最高瞬时频率,瞬态频率偏差,负载减少后的频率恢复时间。		
录波	三相电压,三相电流同时录波。 四种录波模式:25600点/秒,12800点/秒,6400点/秒,3200点/秒。	每相记 25600 点	

各参数项目的详细情况请参照相关章节内容,分别予以详细介绍。

第4页共27页

第三章 基本操作

简介

本章涉及测试仪的许多常规操作方面的内容:

- 测试仪供电
- 测试仪开机、关机
- 按键介绍
- 接线介绍

一、测试仪供电

测试仪供电要求: AC 85~265V 50/60Hz 或 DC 100~300V

二、开机关机

交流供电时,操作电源插座附近的电源开关,观察电源开关点亮,测试仪开机。开机画面出现前测试仪 发出"嘀……"长声。

关机时,操作电源开关即可。

三、按键介绍

测试仪面板共有可以操作的按键 31 个。按键在操作成功后有提示"嘀"声。各按键功能如下表所示:

序号	标 识	功能说明	备注
1	\bigcirc	显示屏开关按键。在不需要显示时可以将显示屏关闭, 仪表的其他部分 正常工作。	
2		未使用	
3	₩	未使用	
4	SYSTEM	系统参数	
5	¢↓	方向按键:增加/减少按键	
6	$\leftarrow \rightarrow$	方向按键: 左/右移位按键	
7	取 消	系统设置或参数设置菜单中,该键用于退出,不保存设置; 或用于停止本表中 17 [~] 20 项的测试	
8	设 置	操作后立即进入参数设置状态	
9	记录	未使用	
10	锁 定	锁定当前屏幕显示数据。当仪表处于锁定状态,显示屏右上角有"锁定" 提示;锁定状态不影响仪表后台计算机通讯;任意键退出锁定状态。	
11	F1-F5	软键,参照当前界面右边界的说明执行不同的功能	见相关章节
12	测 试	在"整定、波动、突加、突卸"时,开始测试项目。	
13	稳态 1	显示稳态数据、电能数据; 数字键:1,设置或选择有效	双功能按键
14	波形 2	显示测试波形; 数字键: 2,设置或选择有效	双功能按键

表 3-1 按键功能一览表

8961C2 发电机专用测试仪

15	谐波 3	显示与谐波相关的图形或数据; 数字键: 3,设置或选择有效	双功能按键
16	不平衡度4	显示三相不平衡度的数据、角度相量; 数字键: 4	双功能按键
17	整定 5	整定测试及相关数据、曲线 数字键:5	双功能按键
18	波动 6	波动测试及相关数据、曲线 数字键:6	双功能按键
19	突加 7	突加测试及相关数据、曲线; 数字键:7	双功能按键
20	突卸 8	突卸测试及相关数据、曲线;; 数字键:8	双功能按键
21	录波 9	录波测试及电压波形; 数字键:9	双功能按键
22	•	小数点键:●	
23	0	数字键: 0	
24	确认	确认当前设置有效;	

第四章 输入连接

4.1 简介

本章解释了如何与被测发电机系统连接及如何调整测试仪的输入连接。 检验测试仪设置是否满足所测系统的特征。包括:

• 输入连接与线制

设置数据在确认后有效。要更改设置,请参阅参数设置章节。

4.2 测试仪输入端子

图 4-1 测试仪后面板

测试仪的后面板如图 4-1 所示, 仪表的后面板有以下几部分组成: 电源插座、测量接线端子(交流、直流)、继电器输出控制端子(突加、突卸控制端子)、通讯口等。

电源插座是给仪表供电的电源输入,仪器的供电为交流 85[~]265V 50/60Hz,在电源插座的下方须放入保 险丝,保险丝的规格为 250V /0.5A;

交流测量接线端子为连接测量回路的端子,端子 1~6 为电流测量端,端子 7~12 为电压测量端。对于 不同的线制方式,仪表的外部接线方法都不同。

直流测量接线端子(附近有标识)。上部端子为电流测量端,下部端子为电压测量端。

突加、突卸继电器的常开,常闭,公共触点。常开(常闭)平时处于断开(吸合)状态,当进行试验时,继电器吸合,测试完毕后断开。继电器的触点最大容量为AC 220V/3A,使用时不能超出,否则易损坏仪表。

J1 为突加控制继电器,J2 为突卸控制继电器。继电器左端为常闭触点,中间为公共点,右端为常开触点。

4.3 输入连接

测试仪具有交流信号测量端子(6个电流、6个电压)和直流信号测量端子(2个电流、2个电压)。使用时请注意。

如有可能, 请在连接之前尽量断开电源系统。请勿单独工作并遵照第一章"安全须知"中所列警告信息操作。对于三相系统,请依照典型接线图所示连接。

4.4 典型使用接线图

测试交流信号的典型接线方式请参照下图所示。

4.4.1 在不采用外部互感器时的典型接线图 (共四种):

图 4-4 单相接线图

图 4-6 3P4W 接线图

4.4.2 使用外部互感器时的典型接线图 (共四种):

图 4-8 单相 (PT / CT) 接线图

图 4-5 3P3W 接线图

图 4-7 3V3A 接线图

图 4-9 三相三线 (3P3W--CT) 接线图

图 4-10 三相四线 (3P4W---CT) 接线图

图 4-11 三相三线 (3V3A--CT) 接线图

典型接线方式,请参照测试仪典型接线图所示。连接各标识端子与仪表相应标识位置。使用互感器时, 请注意互感器同名端的标识与接线图必须一致,否则,可能影响数据的正确性。

测试直流信号的典型接线方式请参照下图所示。

请特别注意以下事项:

- 1. 直流信号测量量程: 电压 100V, 电流 20A;
- 2. 典型接线图见图 4-12

图 4-12 直流信号接线图

4.5 测试数据说明:

4.5.1 使用外接电压 PT、电流互感器 CT 时应将电压、电流变比(初级与次级比值)准确设置(参照参数设置章节)。

4.5.2 显示数据为加在仪表测量端子的参数的实际数值(测试数据)与变比的乘积。公式如下:

Uo=U*PT; Io=I*CT; Po=P*PT*CT; Qo = Q*PT*CT; So = S*PT*CT;

公式中参数的意义如下:

显示数据: 电压 Uo 、 电流 Io 、 有功功率 Po 、 视在功率 So 、 无功功率 Qo; 测试数据: 电压 U 、 电流 I 、 有功功率 P 、 视在功率 S 、 无功功率 Qo; PT: 电压变比 (请参照参数设置章节)。 CT: 电流变比 (请参照参数设置章节)。

4.5.3 合	计计算公式:
---------	--------

表 4-1 合计计算公式

线制	$\sum U$	$\sum I$	$\sum P$	$\sum Q$	$\sum S$	ΣPF
1Φ2W	_		—	1	-	_
3Φ3W	(U1+U3)/2	(I1+I3)/2	P1+P3	Q1+Q3	(S1+S3) * 0.866	
3Φ4₩	(U1+U2+U3)/3	(I1+I2+I3)/3	P1+P2+P3	Q1+Q2+Q3	S1+S2+S3	$\Sigma P / \Sigma S$
3V3A	(U1+U2+U3)/3	(I1+I2+I3)/3	P1+ P3	Q1+ Q3	(S1+S2+S3)* 0.577	

第五章 稳态测试

1 功能简介:

当前基本测量数据。适用于对发电机的实时监测。

2 进入稳态测试

通过操作按键"稳态 1"进入。

- 3 屏幕内容说明:
- 3.1 稳态数据见屏幕(图 5-1)

(1)窗口依次显示频率(Freq),电压(U:V),电流(I:A), 有功功率(P:W),功率因数(PF)。

(2) L1, L2, L3 分别表示第 1, 2, 3 相的数据。

Σ表示: 平均电压、平均电流、合计总功率、合计总功率因数。 (3) 在三相四线时, U12, U23, U31 分别为 UAB, UAC, UCB 之间的 线电压。

- 3.2 电能数据见屏幕(图 5-2)
 - F3:开始/停止电能累计;

F4: 电能复位,累计数据清零(电能累计停止后有效);

在电能累计状态时窗口上方的状态栏显示"电能"。

显示内容:视在功率(S:VA),无功功率(Q:Var),

有功电能(Ep:Wh),无功电能(Eq:Varh)。

提示 1:停止电能累计的方法:手动(F3 软键),自动(累计时间超过预置时间后停止)。如果电能累积时间设置为 0,则电能会无限累积,只能手动停止。

提示 2: 最大电能累计时间为 999 小时 59 分钟,在参数设置中设置。

3.3 直流数据及波形见屏幕(图 5-3)

F5: 进入直流数据及波形屏幕; 显示直流电压、电流、功率及波形。

稳态测试			电能 (3P4)	D
U (V)	I (A)	P(W)	PF	稳态
L1 220.0	1.000	0.055	0.999	
L2 220.1	1.000	220.0	0.999	电能 数据
L3 219.9	1.000	0.055	1.000	
Σ 220.0	1.000	550.0	0.999	
U12 (V)	U23 (V)	U31 (V)	F(Hz)	换档 模式
380.0	380.1	380.1	<u>58.83</u>	直流
发电机运行时	时间:00小	时 01分 30)秒	数据
自动换档			15-01-04 (8:25:00

图 5-1 稳态测试

稳态测试			电能 3P4			
EP (Wh)	EQ(Varh)	S (VA)	Q(Var)	稳态 数据		
	-8.184	940.8	-12.07	由能		
L2 8.623	-0.102	940.6	-12.03	数据		
L3 <mark>8.541</mark>	-0.108	948.7	-12.82	电能		
Σ 220.0	1.000	2.826K	-36.(2	电能		
预设累计时间: 000 小时 01分 30秒 已经累计时间: 000 小时 00分 30秒						
			15-01-04 0	8:25:00		

图 5-2 电能数据—停止状态

图 5-3 直流数据

4 可用软键的功能说明:

稳态测试可以提供的软键功能见下表。

屏幕	软键	软键功能	备注
稳态数据	F1	进入稳态数据;	
稳态数据	F2	进入电能数据;	
电能数据	F1	进入稳态数据;	
电能数据	F3	电能开始/电能停止操作;	
电能数据	F4	电能复位操作(电能累计停止后有效);	
稳态、电能	F5	进入直流数据波形;	

第六章 波形显示

1 功能简介:

显示当前信号的波形。适用于对发电机的基本信号波形的实时监测。

屏幕	软键	软键说明	软键功能	备注
波形显示	F1	全部波形	进入全部波形;	
波形显示	F2	电压波形	进入电压波形;	
波形显示	F3	电流波形	进入电流波形;	
波形显示	F4	分相波形	进入分相波形;	方向键有效
波形显示	F5	波形数据	进入波形数据;	

第七章 谐波显示

1 功能简介:

显示当前信号的谐波数据、棒图、及相关数据。

2 进入谐波显示

通过操作按键"谐波 3"进入。

- 3 屏幕内容说明:
- 3.1 谐波分析屏幕
 谐波数据——所有测试信号的谐波数据;(见图 7-1)
 谐波棒图——所有测试信号的谐波棒图;(见图 7-2)
 更多数据——与谐波相关的测试数据;(见图 7-3)
- 3.2 谐波数据屏幕(见图 7-1)
- (1) 符号说明如下:
 - THD-----总谐波; RMS-----有效值;
 - U(V)---电压谐波绝对值; I(A)---电流谐波绝对值;
 - (%)----谐波相对值(谐波含有率);
- (2) 功能操作如下:
 - 按"←→"分别选择1,2,3相谐波数据。
 - 按"↑↓"选择谐波显示次数。
- (3) 谐波分析说明如下:

频率为 20-65z 时最多显示 128 次谐波, 频率为 65-120Hz 时最多显示 64 次谐波, 频率为 120-420Hz 时最多显示 32 次谐波, 频率为 420-800Hz 时最多显示 16 次谐波。

3.3 谐波棒图屏幕(见图 7-2),功能操作如下:
按"←→"分别选择1,2,3相谐波棒图。
按"↑↓"用于谐波棒图显示换页。

按"游标左移"和"游标右移"查看某次谐波具体值。

- 3.4 更多数据屏幕(见图 7-3)
 电压总谐波 THD、电压偏离系数 DF、电压谐波因数 HVF、
 电话干扰系数 TIF、电话谐波因数 THF。
- 提示1:更多参数定义请参照相关国家标准。

提示 2: 谐波分析在测量数据大于 10%Um(量程)后有效。 **提示 3:** 电话干扰系数、电话谐波因数仅适用于工频信号分析。

4 可用软键的功能说明:

谐波分析显示可以提供的软键功能见下表。

谐波	分析			3V3	D	
	U1 (V)	U1 (%)	I 1 (A)	11 (%)	谐波	
RMS	2(3.3		0.396			
THD	3.556	1.55	0.011	18.5	谐波 棒图	
OR. 1	5:3.2	188.8	0.395	100.8		
0R. 2	0.037	0.01	8.888	0.18		
0R. 3	0.552	35.0	0.003	0.97		
0R. 4	0.046	50.0	0.000	0.05		
0R. 5	2.328	1.13	0.008	15.5	雨夕	
OR. 6	0.033	50.0	0.000	0.05	数据	
<左右键>切换线路、<上下键>翻页 15-01-04 08:2						
	图 7-1	谐波	数据			

图 7-2 谐波棒图

谐波分析			ava	
	L1	L2	L3	谐波
电压有效值	2(3,3	2(3.5	2(2.9	<u> </u>
电压总谐波	1.668	1.503	1.418	谐波 棒图
电压偏离系数	4.3(8	3.017	2.525	
电压谐波因数	0.005	0.005	0.004	
电话干扰系数	31.77	25.02	29.03	
电话谐波因数	0.934	0.728	0.845	更多 数据
			15-01-04 (08:25:00

图 7-3 谐波更多数据

屏幕	软键	软键说明	软键功能	备注
谐波分析	F1	谐波数据	进入谐波数据;	方向键有效
谐波分析	F2	谐波棒图	进入谐波棒图;	方向键有效
谐波分析	F3	更多数据	进入更多数据;	方向键有效

第八章 不平衡度显示

1 功能简介:

显示不平衡度数据及角度相量。

- 2 进入不平衡度显示 通过操作按键"不平衡度 4"进入。
- 3 屏幕内容说明:
- 3.1 不平衡度显示见屏幕(图 8-1)
 不平衡度数据包括如下:
 基本数据---不平衡度基本数据;(见图 8-1)
 角度相量---相量图、角度;(见图 8-2)

a) 不平衡度:(空载下负序电压对正序电压的比值);

b) 基波电压: U1、U2、U3; (三相基波电压分量);

3.2 不平衡度基本数据屏幕(见图 8-1)

c) 零序电压: U0; (零序电压分量);

d) 负序电压: U-; (负序电压分量);

e) 正序电压: U+; (正序电压分量);

基本数据包括如下:

图 8-1 不平衡度

3.3 角度相量屏幕(见图 8-2)

图形显示电压,电流的相量图。

角度相量数据包括如下:

- a) 电压角度: ΦU1、ΦU2、ΦU3; (三相电压相对于 U1 的角度值);
- b) 电流角度: ΦI1、ΦI2、ΦI3; (三相电流相对于 U1 的角度值);
- c) 相量角度: ΦL1、ΦL2、ΦL3; (每相电流相对于电压的角度值);

4 可用软键的功能说明:

不平衡度显示可以提供的软键功能见下表。

表 8-1 软键功能说明

屏幕	软键	软键说明	软 键 功 能	备注
不平衡度	F1	基本数据	进入基本数据;	
不平衡度	F2	角度相量	进入角度相量;	

第九章 整定测试

1 功能简介:

发电机整定测试,获得电压、频率的相关性能数据。

2 整定测试界面操作

通过操作按键"整定 5"进入。

按"测试"按键启动测试,按"取消"按键强制停止测试。

- 3 屏幕内容说明:
- 3.1 电压整定数据见屏幕(图 9-1)
 - 电压整定显示数据包括:
 - △Us,up----电压整定上升范围;
 - δUs, up----相对的电压整定上升范围;
 - ΔUs, do----电压整定下降范围;

δUs, do----相对的电压整定下降范围。

- 3.2 电压整定曲线见屏幕(图 9-2)
 显示电压整定测试周期内电压数据变化及极值。
 按"←→"切换某一相电压的整定曲线和数据。
- 3.3 频率整定数据见屏幕(图 9-3)

频率整定显示数据包括:

- △fs,up----频率整定上升范围;
- δfs, up----相对的频率整定上升范围;
- △fs, do----频率整定下降范围;
- δ fs, do----相对的频率整定下降范围。
- 3.4 频率整定曲线见屏幕(图 9-4) 显示频率整定测试周期内频率数据变化及极值。

4 可用软键的功能说明:

整定测试可以提供的软键功能见下表。

表	9 - 1	软键功能说明

屏幕	软键	软键说明	软键功能
电压整定	F1	电压整定	进入电压整定;
电压整定	F2	电压曲线	进入电压曲线;
频率整定	F3	频率整定	进入频率整定;
频率整定	F4	频率曲线	进入频率曲线;

整	定测试			3P4	D
11	∆Us,up 2q;y	δ Us, up 1 325	∆ Us, do - 0.891	δ Us, do	电压 整定
L2	2.875	1.307	-0.853	-0.385	电压 曲线
L3	2.955	1.343	-0.942	-0.425	频率
Σ	2.915	1.325	-0.895	-0.404	金 版 家
	U1 (V)	U2 (V)	U3 (V)	$\Sigma U(V)$	曲线
e i	CCU F 敷 宁 测 试 ·	在出出		<u>eci.</u> i	
电	卫正起初队。	JX NAVI HU MEZ	71 24	15-01-04 0	8:25:00

图 9-3 频率整定测试-数据

图 9-4 频率整定测试-曲线

第十章 波动测试

1 功能简介:

发电机波动测试,获得相关数据。

2 波动测试操作

通过操作按键"波动 6"进入。

按"测试"按键启动测试,按"取消"按键强制停止测试。

- 3 屏幕内容说明:
- 3.1 波动测试屏幕

波动数据(图 10-1):波动测试的电压极值及频率极值; 波动曲线(图 10-2):波动测试的电压、频率曲线。 波动测试开始后,屏幕显示测试剩余时间。测试总时间 固定为 60s。

3.2 波动数据屏幕(见图10-1)

屏幕显示数据含义:

U——当前电压;
 Ubmax--波动电压最大值;
 Ubmin--波动电压最小值;
 δ Ust--稳态电压偏差;
 F----当前频率;
 Fbmax--波动频率最大值;
 Fbmin--波动频率最小值;
 β F----稳态频率偏差。

3.3 波动曲线屏幕(见图10-2)

屏幕显示数据含义:

Umax---波动测试的电压极大值;

- Umin---波动测试的电压极小值;
- Fmax---波动测试的频率极大值;
- Fmin---波动测试的频率极小值。
- 4 可用软键的功能说明:

波动测试			(3P4)	D
U(V)	Ubmax(V) 228 9	Ubmin(V) 215 y	δ Ust	波动 数据
L2 221.5	228.9	215.4	3.046	U1-F 曲线
L3 221.5	229.0	215.4	3.044	U2-F
Σ 221.5	228.9	215.4	3.046	田线
F (Hz)	Fbmax	Fbmin	β F(Hz)	03-F 曲线
		49.99	0.004	ΣU-F 曲线
加又初加州和小子家	(1)例 44.7月277540		15-01-04 ()8:25:00

图 10-1 波动测试

图 10-2 波动测试-U1 曲线

屏幕	软键	软键说明	软键功能	备注
波动测试	F1	波动数据	进入波动测试数据显示;	
波动测试	F2	U1-F 曲线	进入L1电压、频率曲线;	
波动测试	F3	U2-F 曲线	进入L2电压、频率曲线;	
波动测试	F4	U3-F 曲线	进入L3电压、频率曲线;	
波动测试	F5	∑U 曲线	进入Σ电压、频率曲线;	

表 10-1 软键功能说明

第十一章 突加测试

1 功能简介:

测试发电机突加负载时的输出特性。

2 突加测试操作

通过操作按键"突加7"进入。 按"测试"按键后,延时1秒,测试开始, 按"取消"按键强制停止测试。 测试开始后,延时1秒,突加继电器动作。 测试结束后,突加继电器复位。

- 3 屏幕内容说明:
- 3.1 突加测试屏幕
 突加数据(图11-1) ——突加测试期间的极值数据;
 突加曲线(图11-2) ——突加测试数据变化曲线。
 测试总时间固定为12秒,屏幕显示测试剩余时间。
- 3.2 突加数据屏幕(见图11-1)

突加数据说明:

- U-----当前电压,
- Udyn,min----负载增加时下降的最低瞬时电压;
- δUdyn- ---瞬态电压偏差,
- tU, in-----负载增加后的电压恢复时间;

Fd, min-----负载增加时下降的最低瞬时频率,

- δfd-/Rate----相对额定频率的瞬态频率偏差
- δfd-/Arb----相对初始频率的瞬态频率偏差,

tF, in -----负载增加后的频率恢复时间

- 3.3 突加曲线屏幕(见图11-2)
- Umax, Umin----突加测试的电压极大值, 极小值;
- Imax, Imin----突加测试的电流极大值,极小值;
- Fmax, Fmin----突加测试的频率极大值,极小值;

每一屏最多显示 10 秒测试曲线, 12 秒曲线分两屏显示。按"←→"方向键可以切换曲线显示页面。

4 可用软键的功能说明:

表 11-1 软键功能说明

屏	幕	软键	软键说明	软键功能	备注
突加油	则试	F1	突加数据	进入突加测试数据显示;	
突加油	测试	F2	L1 曲线	进入L1电压、频率曲线;	
突加油	测试	F3	L2 曲线	进入L2电压、频率曲线;	
突加油	则试	F4	L3 曲线	进入L3电压、频率曲线;	
突加注	则试	F5	ΣL 曲线	进入ΣL电压、频率曲线;	

突加测试			(3P4)	D
U (V)	Udyn,min	δ Udyn-	tU, in(S)	突加
L1 226.0	197.8	-10.36	-0.402	女义 1/占
L2 226.0	197.1	-10.38	-0.385	L1 曲线
L3 225.1	197.0	-10.35	-0.425	L2
Σ 225.0	197.1	-10.37	-0.404	曲线
Fd,min	δ Fd-/Rate (%)	δ Fd-/Arb(%)	tF,in(S)	L3 曲线
49.99	-0.06	-0.06	8.888	ΣΙ
突加负载测试	::按<测试键>;	开始		曲线
			15-01-04 0	8:25:00

图 11-1 突加测试数据

突加测试		3P4V	
		UIF	突加 数据
	- working -		L1 曲线
			L2 曲线
os Max: 226.1 V	^{5s} A	10s	L3 曲线
Min: 197.1 V 突加负载测试:按<3	2.464 A 则试键>开始	49.96 Hz	ΣL 曲线
		15-01-04 0	8:25:00

图 11-2 突加测试曲线

5 计算响应时间的特殊说明:

为满足不同种类发电机的特殊要求, 仪表在瞬态试验(突加突卸)时的计算响应时间可以在参数设置中 更改,可以设置为 20ms, 40ms, 60ms, 80ms, 100ms, 120ms, 140ms, 160ms。以设置为 20ms 为例, 仪表每 20ms 计算产生一个瞬态数据,每个瞬态测试数据由 20ms 的采样值计算得到。建议工频发电机测试时设置为 60ms,中频发电机测试时设置为 20ms。

第十二章 突卸测试

1 功能简介:

测试发电机突卸负载时的输出特性。

2 突卸测试操作

通过操作按键"突卸 7"进入。 按"测试"按键后,延时1秒,测试开始, 按"取消"按键强制停止测试。 测试开始后,延时1秒,突卸继电器动作。 测试结束后,突卸继电器复位。

3 屏幕内容说明:

3.1 突卸测试屏幕

突卸数据(图12-1)--突卸测试期间的极值数据; 突卸曲线(图12-2)--突卸测试数据变化曲线。 测试总时间固定为12秒,屏幕显示测试剩余时间。

3.2 突卸数据屏幕(见图 12-1)

U----当前电压;

Udyn, max-----负载减少时上升的最高瞬时电压;

- δ Udyn+ -----瞬态电压偏差;
- tU, de-----负载减少后的电压恢复时间;
- Fd, max-----负载减少时下降的最高瞬时频率;
- δfd+/Rate----相对额定频率的瞬态频率偏差
- δfd+/Arb----相对初始频率的瞬态频率偏差,
- tF, de-----负载减少后的频率恢复时间。
- 3.3 突卸曲线屏幕(见图12-2)
 - Umax, Umin---突卸测试的电压极大值, 极小值;
 - Imax, Imin---突卸测试的电流极大值, 极小值;
 - Fmax, Fmin---突卸测试的频率极大值,极小值;

图 12-1 突卸测试数据

图 12-2 突卸测试曲线

每一屏最多显示 10 秒测试曲线, 12 秒曲线分两屏显示。按"←→"方向键可以切换曲线显示页面。

4 可用软键的功能说明: 表 12-1 软键功能说明

屏幕	软键	软键说明	软键功能	备注
突卸测试	F1	突卸数据	进入突卸测试数据显示;	
突卸测试	F2	L1 曲线	进入L1电压、频率曲线;	
突卸测试	F3	L2 曲线	进入L2电压、频率曲线;	
突卸测试	F4	L3 曲线	进入L3电压、频率曲线;	
突卸测试	F5	ΣL 曲线	进入ΣL电压、频率曲线;	

5 计算响应时间的特殊说明:

为满足不同种类发电机的特殊要求, 仪表在瞬态试验(突加突卸)时的计算响应时间可以在参数设置中 更改,可以设置为 20ms, 40ms, 60ms, 80ms, 100ms, 120ms, 140ms, 160ms。以设置为 20ms 为例, 仪表每 20ms 计算产生一个瞬态数据,每个瞬态测试数据由 20ms 的采样值计算得到。建议工频发电机测试时设置为 60ms,中频发电机测试时设置为 20ms。

第十三章 录波测试

1 功能简介:

记录各相电压电流波形,并提供三相电压、三相电流、 分相电压电流三种查看方式。

2 进入录波测试

通过操作按键"录波 9"进入。

- 3 屏幕内容说明:
- 3.1 录波测试屏幕如下:
 电压波形(图13-1)——同时显示各相电压的录波波形;
 电流波形(图13-2)——同时显示各相电流的录波波形;
 分相波形(图13-3)——同时显示某一相电压电流的录波波形;
- 3.2 录波测试相关按键
- (1)"启动录波":

根据屏幕按键指示, F5 键为"启动录波"按键时, 按 F5 键, 开始录波测试。

(2)"停止录波":

根据屏幕按键指示,F5键为"停止录波"按键时,按F5键,停止录波测试。

3.3 录波模式和录波波形页码显示

4 可用软键的功能说明:

- (1)录波模式——录波模式可以设置为
 25600次/秒,12800次/秒,
 6400次/秒,3200次/秒四种模式。
 录波时间分别约为1秒,2秒,4秒,8秒。
 录波模式在"参数设置"中改变。
- (2) Page——当前显示页数和总页数。操作方向键翻页。
 按"↑↓"显示页数加减1。
 录波测试最多记录 50 页波形数据。

图 13-1 电压录波波形

图 13-2 电流录波波形

图 13-3 分相录波波形

屏幕	软键	软键说明	软键功能	备注
录波测试	F1	电压波形	进入三相电压波形;	方向键翻页
录波测试	F2	U1	进入U1电压波形显示;	方向键翻页
录波测试	F3	U2	进入U2电压波形显示;	方向键翻页
录波测试	F4	U3	进入U3电压波形显示;	方向键翻页

表 13-1 软键功能说明

第 19 页 共 27 页

第十四章 参数设置

1 功能简介:

设置测试仪的重要参数,包括:SYSTEM 设置和功能设置。

2 SYSTEM 系统参数设置

SYSTEM 参数设置内容为测试仪的基础数据。

2.1 通讯参数设置屏幕(图 14-1)

通讯地址----与计算机进行数据通讯的测试仪地址, 0-255;

通讯波特率----与计算机进行数据通讯的速率,

可选 9600、19200、38400、57600Bit/S;

系统设置	
通讯地址: ──── ────────────────────────────────	通讯 设置
通讯速率: 5500	语言 设置
提示:数字键输入1: 9600 2:38400 3:57600 4:115200	时钟 设置
 本机型号: 8961C2	量程 设置
版 本 号: V1.20 本机编号: 8912345678	恢复 出厂
<方向键>移动光标 <确认键>执行保存 <取消键>放弃	并退出

图 14-1 通讯设置屏幕

2.2 语言设置屏幕(图 14-2)

语言选择-----当前显示的语言,可选中文, English。

系统设置	
当前语言:	通讯 设置
1. 中文 2. ENGLISH	语言 设置
	时钟 设置
本机型号: 8961C2	量程 设置
版 本 号: V1.20 本机编号: 8912345678	恢复 出厂
<方向键>移动光标 <确认键>执行保存 <取消键>放弃	并退出

图 14-2 语言设置屏幕

2.3 时钟设置屏幕(图14-3)

时钟设置----当前日期的时钟校准,格式:年-月-日 时-分-秒。

系统设置	
年月日 15 日 14	通讯 设置
	语言
时分秒 🔠 25 📑	设置
	时钟
	设置
	量程
本机型号: 8961C2	设置
版	恢复
本加 加 5: 8912340078	出厂
<方向键>移动光标 <确认键>执行设置 <取消键>放弃	并退出

图 14-3 时钟设置屏幕

2.4 量程设置屏幕(图14-4)

量程设置-----显示当前的交直流电压电流量程和零点。不支持用户自行设置。

系统设置	
交流电压 量程 500.0 零点 5.000	通讯 设置
交流电流 量程 5.000 零点 0.005	语言 设置
直流电压量程 (00.0 零点 (.000) 直流电流量程 20.00 零点 0.020	时钟 设置
	量程 设置
版 本 号: V1.20 本机编号: 8912345678	恢复 出厂
<方向键>移动光标 <确认键>保存并退出 <取消键>放弃	∓并退出

图 14-4 量程设置屏幕

2.5 恢复出厂设置(图14-5)

系统设置	
输入 密码 ★★★★★★	通讯 设置
截生,大幅作收计低方沿黑进行初始化!	语言 设置
言口。华珠旧村刈刈有以且近117004代;	时钟 设置
—————————————— 本机型号: 8961C2	量程 设置
版本号: V1.20 本机编号: 8912345678	恢复 出厂
<方向键>移动光标 <确认键>执行并退出 <取消键>放弃	₽并退出

图 14-5 恢复出厂设置屏幕

第 21 页 共 27 页

3 参数设置(见14-2)

按键"设置"进入功能参数设置。功能参数与仪表具体测试测量功能密切关系。 3.1线制倍率设置(图14-6) 电压倍率(PT)----电压互感器的变比PT。 示例:如果PT为500V/100V,则PT=500/100=5; 电流倍率(CT)----电流互感器的变比CT。 示例:如果CT为100A/5A,则CT=100/5=20; 线制:参照第四章输入连接,选择正确的线制方式; 1:3P3W(三相三线二元件); 2.3P4W(三线四相); 3:3V3A(三相三线三元件); 4:单相;

参数设置	
线制设置 <mark>∃Pዛ</mark>	线制 倍率
电压倍率 	额定 参数
电流借率 <mark>封建提制</mark>	电能 设置
	瞬态 设置
线制设置 数字键1:3P3W 2:3P4W 3:3V3A 4:1P2W	录波 设置
<方向键>移动光标 <确认键>执行保存 <取消键>放弃	并退出

- 3.2 额定参数设置(图14-7)
 - 额定电压----基准电压。

额定频率----基准频率。

额定空载频率----基准空载频率。

初始频率----基准频率。

电压容差带-----瞬态测试周期允许的电压变化范围。

频率容差带-----瞬态测试周期允许的频率变化范围。

参数设置		
额定电压	1220.00	线制 倍率
额定频率		额定 参数
额定空载频率	0050.00	电能
初知则平		设直
电压谷差带	<u>8885.88</u>	瞬态
频率容差带	1005.88	以且
		录波 设置
〈方向键〉移动光标〈确	认键>执行保存 <取消键>放弃	并退出

图 14-7 额定参数设置屏幕

第 22 页 共 27 页

3.3 电能设置(图 14-8)

电能累积时间----电能累积自动停止的触发时间(0-999小时59分钟)。

参数设置	
古化用社叶问	线制 倍率
电能系计时间	额定 参数
<mark>日</mark> (分钟)	电能 设置
	瞬态 设置
	录波 设置
<方向键>移动光标 <确认键>执行保存 <取消键>放弃	并退出

图 14-8 电能设置屏幕

3.4 瞬态设置(图 14-9)

瞬态计算响应时间——突加突卸试验的计算响应时间 20-160 毫秒(通过数字键 1-8 来选择, 建议 60mS)。

参数设置	
照大计符的方叶词	线制 倍率
時心行昇响应的回 20 (ms)	额定 参数
	电能 设置
	瞬态 设置
数字键输入: 1: 20 2: 40 3: 60 4: 80ms 5:100 6:120 7:140 8:160ms	录波 设置
<方向键>移动光标 <确认键>执行保存 <取消键>放弃	并退出

图 14-9 瞬态设置屏幕

3.5 录波设置(图 14-10)

录波模式:参照"录波测试"内容;

1: 25600 点/秒 2: 12800 点/秒

3: 6400 点/秒 4: 3200 点/秒

录波模式	5400	线制 倍率
		额定 参数
		电能设置
		瞬态 设置
数字键输入:		录波
1:25600点/秒 2:12800点/秒	3: 6400点/秒 4: 3200点/秒	设置
<方向键>移动光标 <确认	键>执行保存 <取消键>流	放弃并退出

图 14-10 录波设置屏幕

第 23 页 共 27 页

第十五章 数据管理

1 功能简介:

测试仪可以通过与计算机通讯进行数据传递,测试仪提供 RS232/RS485、USB 三种硬件接口。

2 与计算机直接通讯的硬件连接

测试仪提供多种与计算机进行直接通讯的硬件连接方法。

方法 1: RS232 通讯。通过使用测试仪附件中的 RS232 通讯线与计算机的 RS232 接口直接连接。 该方法适用于分析仪与计算机通讯距离近(小于 10 米),无环境干扰的简单配置。

方法 2: RS485 通讯。通过使用 RS485 通讯线经 RS485/232 转换器与计算机的 RS232 接口直接连接。 该方法适用于分析仪与计算机通讯距离远(小于 1000 米),环境干扰较少的工业配置。

图 15-1 测试仪与计算机通讯—RS485

提示 1: 当环境干扰影响数据通讯的成功率时, RS485 通讯电缆请选择带屏蔽层的双绞线。

提示 2: 分析仪提供的串行口 RS232 和 RS485,串行口的硬件接口均采用 9 针 D 型插座。

提示 3: 串行接口的引脚定义为:

RS232: 2---RXD 3---TXD 5---GND

RS485: 1----A 4----B

3. 计算机软件的使用

下载安装 "8961C2 发电机测试"。该软件适用于满足如下系统配置的计算机:

软件:操作系统 Win2000、Windows XP、OFFICE 2000 以上

设置:安装"8961C2发电机测试"后,执行该程序。界面如图 14-2。

- 1. 地址----与测试仪 SYSYTEM 设置通讯地址相同。
- 2. 波特率-----与测试仪 SYSYTEM 设置波特率相同。
- 3. 通讯端口----选择计算机与分析仪连接的端口。

USB 连接时,选择 USB 即可。 USB 通讯时不必设置地址和波特率。

图 15-2 计算机软件界面

第 24 页 共 27 页

第十六章 日常维护及故障处理

1 内容简介:

讲述用户可以执行的基本维护程序,指导用户进行简单故障的处理。

2 清洁测试仪及其附件

用湿润的布和温和的肥皂清洁测试仪。不要使用腐蚀剂、溶剂或酒精。它们可能会损坏分析仪上的文字。

3 存放测试仪

如要测试仪较长一段时间,应该注意储存环境条件满足技术条件要求。

- 4 测试仪故障及排除方法:
- 1 测量数据出现明显偏差或功率出现负值

请检查测试仪使用的 PT、CT 的技术指标是否适宜,注意电压、电流接入信号的同名端位置。

2 测试仪串行口通讯失败

请检查串口线是否正确,可以按下面步骤进行调整:

- a)检查测试仪设置的通讯地址及通讯波特率是否与计算机的设置相同,若不同则修改设置。
- b)将测试仪和计算机连接线断开,测量测试仪和上位机的串行口信号线。

对于 RS232 口:测试仪和上位机的 TXD 对 GND 端应当为 -8V~ -12V 电压;

对于 RS485 口: 计算机的 A 对 B 端应当为 +2V~ +5V 电压。

若上面的测试信号不正常则为接口或硬件连接存在问题。

3 串行口通讯可以接收到数据但数据经常出错

检查测试仪和计算机的通讯连接线接触是否完好,若使用环境的干扰较大则串口连线应采用屏蔽线并且 将屏蔽层接地。

检查 RS232/485 转换器是否可靠?屏蔽线是否接地?通讯信号传递过程是否失效?

4 仪表开机时无显示。

使用交流电源供电时,请检查仪表电源是否接通?电源电压是否正常?是否符合要求?保险丝是否熔断; 检查液晶显示屏幕的亮度、对比度的设置状态是否改变?

5 更换交流电源保险丝的方法:

第十七章 技术指标

1 性能简介:

测试仪以数值形式表示的性能指标均在规定的容差范围之内。在开机后的 30 分钟和 2 个完整数据采集周期内,测试仪满足规定的准确度。性能指标以一年校准周期为基础。

2 技术指标:

2.1 测试仪提供的测试参数及各参数的技术指标见表 17-1。

表 17-1 测试仪主要性能及技术指标((UN=600V,	IN=5A)
----------------------	-----------	--------

测量参数	测量范围	测量误差	分辨力	过载能力
电压(V)	1.0%UN~100.0%UN	(5~20)Hz: ± (0.5%读数+0.5%量程) (20~45)Hz: ± (0.25%读数+0.25%量程)	0. 1V	120%
电流(A)	0.1%IN~100.0%IN	(45~65)Hz: ± (0.1%读数+0.1%量程) (65~800)Hz: ± (0.25%读数+0.25%量程)	0. 001A	120%
有功功率	0∼UN*IN	(5~20) Hz: PF=1.0: ± (0.5%读数+0.5%量程) PF=0.5: ± (1.0%读数+1.0%量程) (20~45) Hz: PF=1.0: ± (0.25%读数+0.25%量程) PF=0.5: ± (0.5%读数+0.5%量程) (45~65) Hz: PF=1.0: ± (0.1%读数+0.1%量程) PF=0.5: ± (0.2%读数+0.2%量程) (65~800) Hz: PF=1.0: ± (0.25%读数+0.25%量程) PF=0.5: ± (0.5%读数+0.5%量程)	0.1W	
功率因数	0.10~1.00	$(45 \sim 65)$ Hz: ± 0.02	0.001	
频率(Hz)	5~800	$(5\sim65)$ Hz: ± 0.05 Hz $(65\sim100)$ Hz: ± 0.1 Hz $(100\sim800)$ Hz: ± 0.2 Hz	0.01Hz	
电能 (kWh)	999.9MWh	土(功率误差 + 计时误差)	0.1Wh	
计时	999h59m	读数的±0.05%	1s	
谐波分析	(20~65) Hz: 三相 1 (65~120) Hz: 三相 (120~420) Hz: 三相 (420~800) Hz: 三相	~128次谐波及总谐波; 1~64次谐波及总谐波; 1~32次谐波及总谐波; 1~16次谐波及总谐波;		

2.2 其它技术指标:

试验功能:突加测试、突卸测试、录波(都是三相同时试验)。

信号输入: 电压电流均为浮置输入;

测量信号最大峰值: 电压电流均为最大量程的3倍;

采样时间: 40us;

显示刷新间隔时间: 1.0秒;

显示方式: 5.6 寸大屏幕液晶显示 (图文显示);

仪表重量:约4 kg;

整机功耗: <10VA;

仪表外形最大尺寸: 宽×高×深 (308×186×407);

仪表开孔尺寸: 宽×高 (296×166);

2.3 工作环境:

温度: (0~40)℃; 湿度: (20%~90%)RH; 大气压力: (86~106)kPa 仪表工作电源: AC 85~265V 50/60Hz ; DC 100~300V 无较重的振动及电磁干扰;